Archive for the ‘Allgemein’ Category

Beim letzten Mal schrieb ich ueber die (eher zufaellige) Entdeckung der versteckten Eleganz des Universums in Muenzwuerfen.

Dies konnte ich natuerlich nicht einfach so auf sich belassen und schaute mir mal an, wie das bei Experimenten unterschiedlicher Laenge aussieht:

Die Verteilungen der Kopf-Ketten bei unterschiedlich lang dauernden Experimenten sind parallel zueinander. Da muss also mehr dahinter stecken.

Wenn bei logarithmischer Darstellung Geraden zu sehen sind, dann faellt mir als Physiker natuerlich erstmal ein, diese mittels einer exponentiellen Funktion zu modellieren. In diesem Fall waere es natuerlich ein exponentieller Zerfall und das sieht so aus:

Das Reziproke der Zerfallskonstante ist 0,6931. Und das war mir verdaechtig nahe dem Wert der Standardabweichung der Normalverteilung.

Also dachte ich, dass da mehr dahinter steckt. Dass møglichwerweise in der Zerfallskonstante irgendwie die angenommene Wahrscheinlichkeitsverteilung liegt.

Das war so nicht ganz richtig, aber auch nicht vøllig daneben. Zu Letzterem aber mehr in einem spaeteren Beitrag. An dieser Stelle sei nur so viel gesagt, dass ich ein paar Ueberlegungen anstellte und noch mehr Experimente machte, dies mich aber dem Geheimnis hinter dem Wert der Zerfallskonstante nicht naeher brachte.

Also fasste ich allen Mut zusammen und sprach mal mit einem Mathematikexperten darueber. Zufaelligerweise .oO(Wortspielkasse!) war gleich der erste Experte mit dem ich sprach, Øyvind Bakke, ein Professor der sich professionel mit Statistik beschaeftigte.

Als ich mein Problem beschrieb, hatte er nicht gleich die Løsung parat. Aber die trudelte wenig spaeter per elektronischer Post ein.

Natuerlich ist das, mit dem ich hier auf meinem niedriegen Niveau spiele, schon lange erforscht. Und die vermutete Eleganz ist tatsaechlich vorhanden. Aber dafuer muss ich etwas weiter ausholen und leider (?) zum ersten Mal in diesem Weblog mit Formeln arbeiten.

Traditionellerweise wird die Wahrscheinlichkeit, mit der ein Ergebniss eintritt als \(p\) bezeichnet. Das steht møglicherweise fuer „probability“. Die Wahrscheinlichkeit, dass ein Ereignis eintritt, kann niemals grøszer sein als 100%.
Wenn mehrere Ereignisse eintreten kønnen, so ist die Summe aller Wahrscheinlichkeiten 100%. Da man immer das Resultat „es passiert nichts“ mit einbeziehen muss, ist also garantiert, dass immer irgendwas passiert … Tihihihi.
Bei einem Muenzwurf kønnen nur zwei Ereignisse eintreten. Die Wahrscheinlichkeit fuer „Zahl“ sei mit \(p\) bezeichnet. Die Wahrscheinlichkeit fuer „Kopf“ ist dann natuerlich 100% minus die Wahrscheinlichkeit fuer Zahl. Da 100% gleich 1 (eins) ist, kann man dies schick schreiben als \((1-p)\).
Im Fall einer fairen Muenze ist diese Wahrscheinlichkeit \(p\) natuerlich 1/2, aber ich møchte zunaechst auf dieser etwas abstrakten Ebene verbleiben.

Wenn Kopf liegt, dann betraegt die Wahrscheinlichkeit Zahl im naechsten Wurf zu bekommen: \(p\).
Wenn Kopf liegt, dann betraegt die Wahrscheinlichkeit nochmals Kopf im naechsten Wurf zu bekommen: \((1-p)\).
Die Wahrscheinlichkeit, dass man, wenn Kopf bereits liegt, bei zwei weiteren Wuerfen Kopf und dann Zahl bekommt ist also: \((1-p)\cdot p\). Dies ist die Wahrscheinlichkeit fuer eine Kopf-Kette der Laenge 2. Nicht vergessen, es lag bereits Kopf und wir haben dazu noch zwei Wuerfe dazu genommen und im letzten Wurf wurde die Kette mit Zahl abgebrochen.
Die Wahrscheinlichkeit, dass man, wenn Kopf bereits liegt, bei drei weiteren Wuerfen Kopf, nochmals Kopf und dann Zahl bekommt ist: \((1-p)\cdot (1-p) \cdot p\). Dies ist die Wahrscheinlichkeit fuer eine Kopf-Kette der Laenge 3.
Dies setzt sich weiter fort und die Wahrscheinlichkeit eine Kopf-Kette der Laenge \(n\) zu erhalten ist somit: \((1-p)^{(n-1)}\cdot p\).

Dies ist eine sogenannte geometrische Verteilung.

Meine empirischen Experimente kann man nun interpretieren als Frequenz \(f\), wie oft eine Kopf-Kette der Laenge \(n\) auftritt.

Da ich die Frequenz logarithmisch aufgetragen (und wichtiger mittels eines exponentiellen Zerfalls modelliert) habe erhalte ich also:

\(\ln f = \ln \left[ (1-p)^{(n-1)} \cdot p\right] = (n-1)  \cdot \ln(1-p) + \ln p\).

Um die Abbildung und insbesondere den Verlauf der roten Kurve zu beschreiben, muss man im Hinterkopf haben, dass in diesem Falle \(n\) das Argument und \(f\) der Funktionswert ist.
Benutzen wir nun ganz konkret 1/2 als die Wahrscheinlichkeit Zahl zu werfen ein, so erklaert sich der Wert fuer den „Abfall“ der Modellierungskurve – die Zerfallskonstante (oder vielmehr das Reziproke der Zerfallskonstante). Der Logarithmus naturalis von 2 ist naemlich ungefaehr 0,6931.
Warum ich jetzt das Reziproke der Zerfallskonstante betrachtet habe, haengt damit zusammen, wie man den exponentiellen Zerfall definiert. Oft wird dieser naemlich mit einem Bruch im Exponenten geschrieben und wenn man den nicht haben will, nimmt man einfach den reziproken Wert. Aber ich verliere mich hier gerade etwas in Details.

Passen wir  nun den im vorherigen Bild gezeigten Datensatz mit dem richtigen Modell an, so erhalten wir:

YEAH!!! Das passt ja super!
Die graue Kurve ist der bereits oben besprochene exponentielle Zerfall, denn ich finde es schon interessant, wie sich zwei vøllig verschiedene Modelle (und damit Implikationen) der Realitaet doch ziemlich gut annaehern. Das ist so wie der Unterschied zwischen den Gravitationstheorien von Newton und Einstein. Beides sind nur Modelle und Newton ist definitiv mehr falsch als Einstein. Aber wenn ich mich nur in Bereichen bewege, in denen das nicht relevant ist, muss ich mich  nicht mit der komplizierteren Sache herumschlagen. Toll wa!

Nun da die Neugier, wo die Eleganz des Universums herkommt, befriedigt ist, komme ich zurueck zum eigentlichen Thema: „Wie unfair ist eine Muenze zu mir, wenn ich diese werfe?“

Dies ist in diesem Bild veranschaulicht:

Hier sind untypische Kopf-Ketten Verteilungen fuer jeweils zwei Experimente (aus jeweils 1.000)  mit jeweils 1.000 bzw. 10.000 Wuerfen dargestellt. Denn 1.000 Mal eine Muenze werfen ist durchaus etwas, was man machen kann. Da braucht man nur eine Klasse mit 10 Schuelern und laeszt die 100 Mal ’ne Muenze werfen. Bzw. macht man das 10 Jahre lang, dann hat man 10.000 Muenzweurfe.

Passt man die Ergebnisse mittels der geometrischen Verteilung an, um den Wahrscheinlichkeitswert fuer Zahl heraus zu bekommen, so kønnen sich diese Werte massiv voneinander unterscheiden. Ich muss zugeben, dass die hier gezeigten Werte nicht nur untypisch, sondern extrem waren, suchte ich doch extra die grøszten / kleinsten Wahrscheinlichkeitswerte unter all den jeweils 1.000 Experimenten heraus.

Die extremen Wahrscheinlichkeitswerte fuer die Daten im linken Graphen bedeuten, dass selbst bei 1.000 Wuerfen mit einer eigentlich fairen Muenze, die Schwankungen so extrem sein kønnen, dass es aussieht, dass die Muenze NICHT fair ist, sondern eine (erhebliche!) Tendenz zu einem der beiden Resultate hat. Und dabei denkt man doch landlaeufig (also zumindest ich dachte das bisher), dass 1.000 Wuerfe schon ’ne gute Statistik sind.

An den Wahrscheinlichkeitswerten im rechten Graphen sieht man aber auch, dass die extremen Werte weiter zusammen ruecken. Untypische Kopf-Ketten Verteilungen werden also immer typischer. Im Falle des 1.000-mal-10-Millionen-Wuerfe-Experiments betrug die Diskrepanz zwischen den beiden extremsten Wahrscheinlichkeitswerten uebrigens nur noch ca. 0,0021.

Aber 10 Millionen Wuerfe. Da braucht man schon die Schueler eines ganzen Landes fuer um das zu realisieren … .oO(MUAHAHAHAHAHA).

Die gibt es seit Jahren, und ich habe immer gesagt, dass sie den Menschen an der Kasse ersetzen werden.

Aber erst in letzter Zeit ist mir aufgefallen, dass es tatsaechlich weniger Kassenpersonal gibt.

Und wer hat’s entwickelt und gebaut? So Leute wie ich: Ingenieure und Softwareentwickler. Weil wir eigentlich eine bessere Welt schaffen wollen. Nur mit den direkten Konsequenzen unserer Arbeit wollen wir nicht so gerne konfrontiert werden.

Aber ich habe ein bisschen die Hoffnung, dass andere wichtigerere Leute als Ingenieure, das mehr und mehr merken und versuchen Wege der Anpassung an die neue Situation zu finden. Wie bspw. in Finnland. Auch wenn die vorgeschobenen Motive (und vermutlich glauben die Politiker da wirklich dran) bisher immer noch sog. „Kosteneinsparungen“ sind *rolleyes*.

Auch wichtig in diesem Fall ist, dass das die Mitte-Rechts-Regierung macht. Und das ist der Hauptgrund, warum ich auf die Situation auf der anderen Seite des Atlantiks mit etwas Hoffnung sehe. Ihr wisst schon, Nixon und China und so.

Es steht die Frage im Raum, wie oft ich bspw. 3 mal hintereinander Kopf (oder Zahl) werfe, wenn ich eine Muenze 100 Mal werfe.

Hintergrund dieser Frage ist immer noch, wie schnell ich pleite gehe, wenn ich all mein Geld auf das jeweils andere Resultat setze und bei jedem Kopf-Wurf meinen Einsatz verdopple.

Und natuerlich interessieren mich nicht nur Ketten von 3-mal-Kopf-(oder-Zahl)-hintereinander, sondern auch alle anderen møglichen Kopf-(oder Zahl)-Ketten.

Und damit ich mir das „(oder Zahl)“ im Weiteren sparen kann, konzentriere ich mich ab sofort im Wesentlichen nur noch auf die „Kopf“-Wuerfe.
Man kann sich ja denken, dass die Kopf-Zahl-Situation mehr oder weniger symmetrisch ist. Innerhalb statistischer Schwankungen, ist das auch erstmal richtig. Mehr dazu in einem viel spaeteren Beitrag.

Bei 100 Wuerfen sieht eine typische Kopf-Kettenverteilung so aus wie der linke Graph in diesem Bild:

So einige Male folgte auf Kopf gleich eine Zahl, ein paar Mal folgt auf einen Kopf Wurf gleich noch einer. Høhere Kopf-Ketten treten zwar auf, aber selten.

Zwei untypische (aber innerhalb statistischer Schwankungen durchaus erlaubte) Kopf-Kettenverteilung kann man im rechten Graph sehen.

Bei einer von mir als „kurz“ bezeichneten untypischen Kopf-Kettenverteilung treten keine høheren Kopf-Ketten auf, waehrend bei einer „langen“ untypischen Kopf-Kettenverteilung ein unwahrscheinlich „hohes“ Ereigniss auftritt. In diesem Fall wurde bei letzterem 11 mal hintereinander Kopf geworfen … oioioi … 211, je nach Ausgangseinsatz ist das schon ’ne ganze Menge Zaster.

Aber das ist natuerlich noch keine Antwort auf die Frage. 100 Wuerfe sind noch nicht so viele.

Auszerdem steht auch immer noch irgendwie im Raum, ob die Kopf-Zahl-Situation wirklich symmetrisch ist. Bei 100 Wuerfen sind die statistischen Schwankungen noch so grosz, dass man darueber keine klaren Aussagen treffen kann.

Schauen wir deswegen doch mal auf die Kopf- und Zahl-Kettenverteilungen fuer 10.000 Wuerfe:

Das ist zwar kein Beweis, aber fuer meine Belange reicht es, um davon auszugehen, dass tatsaechlich eine symmetrische Situation vorliegt und ich Zahl-Wuerfe im Weiteren ganz beruhigt unberuecksichtigt lassen kann.

Ach ja, die in diesem Bild gezeigten Kopf- bzw. Zahl-Kettenverteilungen sind selbstverstaendlich aus dem selben Experiment.

„Aber mhmmmm … das sieht ja verdaechtig aus“, dachte ich mir da und schaute mir mal die Situation bei 100 Millionen Wuerfen an.

Im linken Graphen (nicht zu verwechseln mit Graphen … tihihi) ist die Ordinatenachse linear und wir sehen das bereits bereits bekannte Verhalten.

Im rechten Graphen hingegen ist das selbe Experiment zu sehen, allerdings ist die Ordinatenachse logarithmisch. Jeder lange Strich bedeutet also eine Verzehnfachung des Wertes.

Und was sehen wir hier? WHOOOOAAAHHHH!!! Die Kopf-Kettenverteilung liegt auf einer Geraden. KRASSOMAT!

Das sieht aus, als ob das Universum mich an seinen ihren Geheimnissen teilhaben lassen will.

Bei so viel Eleganz war ich pløtzlich abgelenkt von den eigentlichen (Kasino) Fragen und konzentrierte mich nun darauf. War eh viel spannender.

Aber genug fuer heute. Mehr dazu im naechsten Beitrag in dieser Reihe.

… von denen ich dachte, dass ich die niemals lesen werde:

1.: Russia Is Running Out of Forest

2.: Saudis ‚fear sand shortage‘

3.: An Interview with a Gay, Russian Neo-Nazi … .oO(DA FUCK!)

… tihihihi …

Wenn ihr, meine lieben Leserinnen und Leser, nur einen der drei Links anklicken wollt, dann empfehle ich das Interview. Und sei es nur um sich deren Symbol anzuschauen: das zu erwartende Hakenkreuz im trauten Beisammensein mit gekreuzten, erigierten Schwaenzen Penissen Schwaenzen .oO(verfluchte Sozialisation). Aber auch das Interview selber lohnt sich zu lesen (sind auch nur zwei Seiten). Denn der Titel laeszt nur die Haelfte des Spasz‘ erahnen. Da jagt eine Schote die Andere, wie man, da wo ich herkomme, so schøn sagt.

Muenzwuerfe sind statistisch gut untersucht. Aber mit meinen Statistikkenntnissen ist’s nicht so weit her.

Und seit langer Zeit fragte ich mich, wie fair eine faire Muenze _zu mir_ ist.

Etwas konkreter fragte ich mich zwei Dinge:
1.: wie viel mehr ich „Kopf“ (oder „Zahl“ … im Weiteren ohne Anfuehrungszeichen) erhalte, und
2.: wie oft ich bspw. 3 mal, 4 mal, 5 mal etc. Kopf (oder Zahl) hintereinander werfe,
wenn ich eine faire Muenze bspw. 10 mal, 100 mal, 1000 mal, etc. werfe.

Ersteres bedeutet also das Folgende: wenn ich im Kasino immer nur auf Kopf setze, habe ich dann am Ende plus minus Null gewonnen oder verloren? Bei einer fairen Muenze wuerde ich das ganz naiv erstmal erwarten. Oder anders: ich erwarte also, dass, wenn ich einen Ueberschuss an Zahl habe, dies sich „automatisch“ ausgleicht.

Das Zweite ist die Frage danach wann ich Haus und Hof verspielt habe, wenn ich im Kasino immer auf Zahl setze und meinen Einsatz immer verdopple wenn Kopf kommt. Es geht hier also um Kopf-Ketten.
Mathematisch ist das sozusagen die Umkehrung des Prinips hinter Fellers Muenzwurfkonstanten.

Das ist alles schon geløst, aber wie ich oben schrieb, fehlt mir das mathematische Wissen.

Also dachte ich mir, dass ich ein paar anschauliche Experimente mache.

Ich programmierte mir ein kleines Programm, welches fuer mich die Muenze ganz oft warf und registrierte ob es Kopf oder Zahl war. Auszerdem wurde die Verteilung der Kopf-Ketten (und auch der Zahl-Ketten) gespeichert.

Ein Beispiel (50 Wuerfe):

ZKKKKZZKZKZKZKZKZKKZZZKKZKKZKZZZKZZKKZZKKKKZKZKZKZ

Nicht gespeichert wurde das konkrete Resultat jedes Wurfes.

Gespeicherte wurde aber:

Laenge der KetteHaeufigkeit dieser Kopf-KetteHaeufigkeit dieser Zahl-Kette
112x10x
23x4x
32x0x
40x2x

Und auch wenn diese Information bereits in der Tabelle steckt, so wurde nochmal extra gespeichert, dass Kopf zwei mal øfter geworfen wurde als Zahl.

Nun habe ich das Programm natuerlich nicht nur eine Muenze bswp. 10 Millionen mal werfen lassen.

Nein, nein. Da das Werfen schon automatisiert war, wollte ich auch wissen, ob es das Gleiche ist, wenn eine Muenze 10 mal geworfen wird und dies 10 mal wiederholt wird oder ob ich eine Muenze gleich 100 mal werfe.

Ganz konkret liesz ich die Muenze 10 mal, 100 mal, 1.000 mal, …, 10.000.000 mal werfen und dies wurde jeweils 1.000 mal wiederholt.
Auszerdem liesz ich die Muenze 100.000.000 mal, 1.000.000.000 mal und 10.000.000.000 mal werfen und wiederholte dies jeweils 100 mal, 10 mal und gar nicht.

Dass die letzten Experimente nicht so oft wiederholt wurden liegt daran, wie viel Zeit so ein Experiment braucht:

Wenn ich die Muenze 10 Millionen mal werfe und das Experiment 1000 mal wiederhole, so benøtigt das ca. 10.000 Sekunden. Das sind beinahe 3 Stunden. Weil ich meinen Computer nicht mehr als ca. 10 Stunden rechnen lassen wollte, verminderte ich die Anzahl der letzten drei Experimente.

Genug fuer heute. Beim naechsten Mal zeige ich euch, meinen lieben Leserinnen und Lesern, dann wie typische Resultate aussahen.

Natuerlich in einem Artikel mit dem Titel: „Von der Wahrheit, der Luege und der Wirklichkeit, Teil 2“ (insb. die 2 kennzeichnend, dass das Thema komplizierter ist, denn man gemeinhin annehmen mag), schreibt Thomas Fischer:

Unser Alltag ist weithin davon bestimmt, anderen Menschen nicht [sic] zu sagen, was wir (über sie) empfinden, denken, fühlen, wollen.

Und das ist ja genau das, was ich bereits hier in den einleitenden Saetzen sagte.

Ueberhaupt finde ich, dass die Wichtigkeit des Luegens nicht genuegend anerkannt wird.

Ueberhaupt ist das ein ganz feines Dilemma unserer Gesellschaft … tihihi.

Den folgenden Witz fand ich so gut, dass er mir einen eigenen Beitrag wert ist, damit ihr, meinen lieben Leserinnen und Lesern, auch daran teilhaben kønnt.

There’s a joke about a planet full of people who believe in anti-induction: if the sun has risen every day in the past, then today, we should expect that it won’t. As a result, these people are all starving and living in poverty. Someone visits the planet and tells them, “Hey, why are you still using this anti-induction philosophy? You’re living in horrible poverty!” They answer, “Well, it never worked before.”

Gelesen habe ich den beim slatestarcodex, der es wiederum aus einem anderen Buch abgeschrieben hat.

Neulich stolperte ich ueber einen Artikel mit dem Titel „Judgments About Fact and Fiction by Children From Religious and Nonreligious Backgrounds“ in Cognitive Science, Volume 39, Issue 2, 2015, Seiten 353–382.

Dort wurden 5- und 6-jaehrigen Kindern Geschichten erzaehlt. Danach fragte man die Kinder ob die Charaktere in den Geschichten echte (wie bspw. Robespierre) oder erfundene (wie bspw. Bilbo Beutlin) Menschen waren.

Im Wesentlichen konnten die Kinder in zwei Gruppen eingeteilt werden: durch Eltern und/oder Schule, religiøsen Einfluessen ausgesetzte Kinder und solchen die dem nicht ausgesetzt waren.

Von frueheren Studien wusste man bereits, dass religiøse Kinder glauben, dass Geschichten echt sind, wenn ein „Gott“ mitspielt. (Nebenbemerkung: Da mir dieses Wort auf vielen Ebenen nicht passt, ich es der Kuerze und den bekannten Assoziationen wegen aber irgendwie schon benutzen møchte, werde ich im Weiteren „Gøttin“ schreiben.)

Das haette ich erwartet, aber wie ich schon mehrfach schrieb: es ist wichtig, dass mit wissenschaftlichen Methoden die Ueberlegungen des „gesunden Menschenverstandes“ untersucht werden, denn oft genug liegt dieser falsch!

Deswegen untersuchten die Autoren der Studie,

[…] how children with no systematic exposure to religion in either church or school would respond to religious stories.

Fruehere Untersuchungen fanden heraus, dass …

[…] in the absence of a religious education, children will regard miracles as implausible because they involve ordinarily impossible outcomes.

Und deswegen sollten die Kinder zu dem Schluss kommen, dass …

[…] the protagonist in a story that includes a miracle is a fictional character rather than a real person.

Im Zusammenhang bedeutet dies:

[…] the judgments of such secular children should diverge sharply from these made by children who have received a religious education

Bis hierher auch nicht Neues. Nun kommt aber etwas, was mich vom Hocker gehauen hat.

[…] theorists studying religious development have emphasized a different possibility. They have proposed that young children have a natural inclination to believe in beings with extraordinary powers.

DA FUCK! Da versuchen „die“ doch tatsaechlich die „Gøttin“ in unsere Gene zu schreiben.
Mich duenkt ich las oder hørte Noam Chomsky sagen, dass es gute Indizien dafuer gibt, dass die zugrundeliegenden sozialen Prozesse welche auch zur Bildung von Religionen fuehren, evolutionaer von Vorteil fuer die Menschheit waren. „Sozial sein und und die Naehe zu anderen Menschen suchen“ ist uns also mglw. tatsaechlich in die Gene geschrieben. Aber das ist etwas ganz anderes, als dass man von sich aus an eine „Gøttin“ glauben will.

Wieauchimmer, es ist eine wissenschaftliche These, denn sie kann falsifiziert werden:

[o]n this view, secular children should not differ radically from religious children in their judgments about biblical stories. In particular, they should accept that a real protagonist might be involved in a miraculous event.

Soweit zur „Vorgeschichte“.

Die Kinder wurden mit drei verschiedenen Arten von Geschichten praesentiert.

[…] (a) realistic stories that contained no magical elements; (b) religious stories that included miracles brought about by divine intervention; and (c) fantastical stories that included magical elements but no divine intervention.

Ein Beispiel waere, dass eine kranke Person von einem Arzt (a), von „Gøttin“ (b) oder von einer Fee (c) geheilt wurde.

Wie zu erwarten (?), waren alle Kinder …

[…] significantly above chance in categorizing realistic characters as “real.”

Auch nicht ueberraschend ist, dass religiøs erzogene Kinder …

[…] were significantly above chance in categorizing religious characters as “real.”

Ebenso in mein Erwartungsbild passt, dass

[…] secular children were significantly below chance in categorizing religious characters as “real” (i.e., they judged them to be pretend).

Aber dies ist natuerlich entgegen der oben geaeuszerten These:

This sharp discrepancy between children with and without exposure to religion lends no support to the hypothesis that children are “born believers” […] with a natural credulity toward extraordinary beings with superhuman powers.

Und abschlieszend war auch dies voraus zu sehen:

[…] children were inclined to judge fantastical characters as “pretend,” […]

Ueberraschend aber der zweite Teil dieses Satzes:

[…] but this tendency was only significant for the […] children attending public school—especially those who were non-churchgoers.

Das møgen sich meine lieben Leserinnen und Leser mal durch den Kopf gehen lassen.

 

<Zeit um sich das durch den Kopf gehen zu lassen>

 

Die Bedeutung dieses Resultates ist, dass religiøse Kinder an Magie auch dann glauben, wenn „Gøttin“ nicht mitspielt!

DAS! IST! SO! KRASS!

Und warum finde ich das krass? Ich ging zwar nicht davon aus, dass irrationaler Glauben nicht mehr vorkommt, aber Zauberei (?!), das fuehlt sich fuer mich wie Mittelalter an.

Wenn man den konkreten Zahlen genauer folgt, kommt man zwar zu dem Schluss, dass religiøse Kinder nicht unbedingt „glauben“, dass magische Charaktere real sind, aber sie sind sich unsicher! Deswegen raten sie ob eine Person in einer solchen Geschichte real oder ausgedacht ist. Diese Kinder haben also nicht die geistigen „Werkzeuge“ um das richtig einzuschaetzen! Deswegen das Raten.

Eine Erklaerung die von den Autoren gegeben wird ist aehnlich:

[…] these children make use of their familiarity with biblical stories in conceptualizing fantastical stories.

Wenn man sich das aber mal durchdenkt, ist diese Erklaerung aber eigentlich noch schlimmer. Sagt sie doch aus, dass diesen Kindern von ihren Eltern die _falschen_ Werkzeuge mit auf den Weg gegeben wurden!

Oder exakter in Form einer Hypothese ausgedrueckt:

It is possible that religious teaching […] leads children to a more generic receptivity toward the impossible, that is, a more wide-ranging acceptance that the impossible can happen in defiance of ordinary causal regularities.

Die Gegenhypothese waere, dass die Kinder „weil Gøttin und so“ sagen, weil sie mit den Hintergruenden in den Geschichten (bspw. eine Person die ueber’s Wasser geht) vertraut sind.

Nun ja, wegen Wissenschaft und so, wurde dies ebenfalls untersucht. Ich erspare euch, meinen lieben Leserinnen und Lesern, die Details an dieser Stelle und springe gleich zum Ergebnis: es ist wahrscheinlicher, dass die erste Hypothese wahr und die Gegenhypothese falsch ist.

Oder genauer:

[…] secular children, who had no exposure to such an [religious] education, systematically concluded that the protagonist in fantastical stories is pretend and justified that decision by reference to the impossibility of the story events. By contrast, children who had been exposed to religion via church or parochial schooling did not systematically conclude that the protagonist was pretend, and made fewer appeals to the impossibility of the story events.

Das ist schon erstaunlich. Aber um wirklich sicher zu gehen, wurde vorher getestet, ob so junge Kinder ueberhaupt den Unterschied zwischen „ausgedacht“ und „echt“ ueberhaupt verstehen. Fruehere Studien bestaetigen dies und auch hier fand man wieder heraus, dass …

[f]ive- and 6-year olds’ […] grasp the fundamental distinction between real and fictional people.

Als kurze Nebenbemerkung: das find ich VØLLIG krass! Denn das hørt sich erstmal total grundlegend an, aber damit zusammen haengen ziemlich komplizierte kognitive Faehigkeiten:

[…] children come to understand stable regularities concerning: (a) inanimate physical objects, for example, that physical objects retain their identities over time and that one solid object cannot pass through another […]; (b) biological organisms, for example, that biological organisms can grow in size over time but not shrink […] or get older over time but not younger […]; and (c) mental processes, for example, that seeing an object requires an unobstructed line-of-sight […] or that thinking typically involves a single, unstoppable stream of thoughts […].

Ich sag ja: eine krasse Leistung solch junger Menschen!

Damit im Zusammenhang steht dann auch dies hier:

Children’s conceptualization of the physical, biological, and mental domains should enable them to identify some of the outcomes and transformations they encounter in narratives as impossible, and to differentiate between what can happen in real life and what can happen in a fairy tale.

Und dieser Faehigkeit ist (wenigstens teilweise) „kaputt“ in religiøsen Kindern.

Die armen Kinder! Denen wird von ihren wichtigsten und ersten Vertrauenspersonen erzaehlt, dass Dinge die sie eigentlich als fuer nicht møglich erkennen eben doch „wahr“ sein sollen (so wie mit zwei Brøtchen Tausend Leute satt machen). Da wundert es mich ueberhaupt nicht, dass sie verwirrt sind und raten, ob eine Person die Magie anwendet echt ist oder nicht.

Weiter nun!

Secular children […] adopted a dichotomous […] view of narratives and their characters, thinking of them as either fictional or factual. Contrary to what might be expected if children were “born believers” […] or possessed a “belief instinct” […], they treated stories of the miraculous as akin to fairy stories.

Und in dem Zusammenhang kommt mir das hier bekannt vor:

Indeed, some secular children displayed an attitude of active skepticism toward religion. They referred to God to justify their categorization of a story protagonist as pretend.

.oO(Tihihihi)

Genau deswegen stellt sich dann aber die Frage:

How exactly do religious children come to have a broader conception of what can actually happen than secular children?

Zwei prinzipielle Antworten sind møglich.

Die Erste waere da:

[…] exposure to religious teaching might encourage children to entertain the idea that some agents are endowed with a special or superhuman power that can override ordinary causal regularities.

Und die Zweite:

[…] children are disposed to credulity unless they are taught otherwise by their families. Thus, secular children are schooled in the idea that natural laws preclude any kind of miraculous or magical outcome.

Die Autoren der Studie kommen zu dem Schluss, dass …

[…] recent findings lend more support to the first hypothesis than the second.

Das wuerde aber bedeuten, dass NICHT nicht die religiøse „Ausbildung“ an und fuer sich fuer das „nicht-richtig-funktionieren“ dieser Kinder verantwortlich ist. Ich denke, dass dies vielmehr bedeutet, dass bestimmte Ideen mehr „Schaden“ anrichten bei der Entwicklung von Kindern zu rationalen Wesen als andere. Nur diese Ideen sind heutzutage und auf diesem Planeten zutiefst mit religiøsen Lehren verbungen. Deswegen kann man das auch „in einen Topf werfen“.

In other words, it is more plausible that a religious upbringing overcomes children’s pre-existing doubts about whether ordinarily impossible events can occur than that a secular upbringing suppresses children’s natural inclination toward credulity.

Oder anders:

[…] religious instruction helps children to engage in such imaginative reflection with respect to impossible events as well. Thus, it prompts them to think about ways an otherwise impossible event could happen even if their immediate intuition is that it could not.

Zum Abschluss schreiben die Autoren dann, dass …

[…] the environment in which children are raised has an important influence on the way they process and categorize the narratives that they encounter.

Da konnte ich mir dann beruhigt selber auf die Schulter klopfen.

Dies hielt ungefaehr zwei Sekunden lang an. Dann kam mir der Gedanke, dass religiøse Menschen genauso ernsthaft, echt und wahrhaftig an „Gøttin“ glauben, wie ich an die Nichtexistenz derselbigen. Oder wie ich an die Wichtigkeit von Privatsphaere. Oder … oder … oder … etc. pp.

Oder wie es ziemlich am Anfang des Artikels steht:

[…] [W]hen an adult testified that an ordinarily impossible event had taken place, or would take place, children accepted that testimony and acted upon it. […] research […] suggests that they accept adults’ claims about ordinarily impossible outcomes.

Inwiefern spielt es also eine (mglw. schaedliche?) Rolle wie ich meine persønliche Realitaet wahrnehme, wenn es um die Erziehung des jungen Mannes der bei mir wohnt geht?

An dieser Stelle soll jetzt kein Ausflug in den Poststrukturalismus folgen. Ich denke zwar, dass dies durchaus angebracht waere, es wuerde aber zu weit fuehren.

Aber ich møchte hier gern zwei Beispiele anbringen ueber die ich stolperte, die sehr gut das illustrieren, was ich meine.

Zum ersten waere da meine (bisherige) Wahrnehmung uber das Massaker auf dem Platz des himmlischen Friedens 1989. Nachdem ich den hier ausfuehrlich vorgestellten Artikel gelesen hatte, las ich eine Darstellung, wie junge Chinesen das Ereignis sehen. Und das war dann doch ein bisschen anders als das was ich bis dahin fuer die unumstoeszliche Realitaet hielt.

Da ich dort dann mehr las, wurde auch gleich noch meine Wahrnehmung bezueglich gewisser gesellschaftlich, partizipatorischer Prozesse herausgefordert.

Thomas Fischer drueckt es in einem Artikel mit dem Titel „Von der Wahrheit, der Lüge und der Wirklichkeit“ so aus:

Was möchten wir? Differenzierung. Das ist: Rationalisierung, Vernunft, Überprüfbarkeit von Argumenten. Anerkennung des Fremden wie des eigenen Andersseins.

Aber am Besten schreibt es Eliezer Yudkowsky in dem Essay „Cognitive Biases Potentially Affecting Judgment of Global Risks“ (PDF):

[The ability] to detect a wide variety of logical flaws […] must be applied evenhandedly [sic]: both to our own ideas and the ideas of others; to ideas which discomfort us and to ideas which comfort us. Awareness of human fallibility is dangerous knowledge if you only remind yourself of the fallibility of those who disagree with you. If I am selective about which arguments I inspect for errors, or even how hard I inspect for errors, then every new rule of rationality I learn, every new logical flaw I know how to detect, makes me that much stupider. Intelligence, to be useful, must be used for something other than defeating itself.

moo2

Das ist MOO 2! Ein Spiel welches ich soooooooo gerne gespielt habe. Muss wohl am „Das Universum erobern“-Thema liegen.

Ich versuchte das mehrfach zu installieren, scheiterte aber immer irgendwie an der gleichen Sache: ich hatte keine Lust Dosbox zu konfigurieren.

Aber im Zuge der DiabloInstallationen probierte ich es nochmal. Ich hatte zwar immer noch keine Lust die Einstellungen an Dosbox vorzunehmen, aber eine kurze Recherche førderte zu Tage, dass es wohl auch eine windows-Version gab. Und tatsaechlich! Die hatte ich auch. Und damit klappte dann alles.

Das Spiel stuerzt zwar an einigen Stellen reproduzierbar ab, aber es ist ziemlich einfach diese zu umgehen. Und Zack! … Schon bin ich dabei die Galaxis zu erforschen :) .

In letzter Zeit duenkt mich, dass das Thema „Roboter / kuenstliche „Intelligenzen“ nehmen uns die Arbeit das Malochen ab“ praesenter ist in der gesellschaftlichen Diskussion. Am Bezeichnendsten fuer mich war mglw. eine Zufallsbegegnung im Zug mit einem Amerikaner. Als wir durch Zufall auf dieses Thema zu sprechen kamen, meinte er, dass dies sehr viel diskutiert wird in den USA.

Dass ein groszer Teil der arbeitenden Bevølkerung „Bullshit Jobs“ hat,  dass es einfach keine „traditionelle Arbeit“ mehr fuer Menschen gibt (und wir kønnen nicht alle Programmierer werden!), dass das auch (und insbesondere) studierte Leute wie mich betrifft, und dass das alles ueberhaupt nicht schlimm ist und wir alle diese Entwicklungen mit offenen Armen empfangen sollten, wurde (und wird) gerne von mir hier besprochen. Gern auch eingebettet in allgemeinere Theorien.

Ich denke, dass ihr, meine lieben Leserinnen und Leser, die Wichtigkeit des Themas erkannt habt und in der Zukunft auch ohne meine immer wiederkehrenden Tiraden diesbezueglich auskommt. Daraus folgt natuerlich, dass ihr auch ohne meine Hilfe fuer diese tolle Zukunft „werben“ werdet und versucht, den Menschen ihre Aengste zu nehmen :) .

Nicht vergessen: Fuer andere zu arbeiten ist ganz grundsaetzlich Scheisze! Cooler ist’s, tolle Sachen fuer sich selbst (und andere) zu machen, fuer die man sonst keine Zeit hat, weil man ja fuer andere arbeitet. Und weil das „Endziel“ zugegebenermaszen etwas erschreckend auf die meisten Menschen wirken wird, kann man ja erstmal fuer eine deutlich reduzierte Arbeitszeit argumentieren. Dass das besser fuer alle ist (nicht nur fuer die Arbeiter), wurde erst neulich wieder gezeigt.

Lange Rede kurzer Sinn: Ich sehe dieses Thema als hier in diesem, meinem, Weblog als mehr oder weniger fertig besprochen an.

Nur derer ganz konkrete Beispiele, wie Roboter oder kuenstliche „Intelligenzen“ nun das machen, was bisher Menschen taten, hatte ich bisher erst eines. Deswegen werde ich in der Zukunft meine Augen offen halten und euch hier mit weiteren Robotern/kuenstlichen „Intelligenzen“ konfrontieren. Insbesondere, weil wir diese auch selten als das wahrnehmen, was sie sind: Befreier der Menschheit aus den Klauen des Malochens. Es wird noch etwas dauern, bis wir auch aus den Klauen des Kapitalismus befreit sind. Oder etwas provozierender und in alten Dogmen gesprochen „Arbeitsplatzvernichter“ .oO(Iiiiiih … da ekelts mich, wenn ich solche alten und mittlerweile offensichtlich falschen „Weltanschauungsrahmen“ mit derartigen Wørtern heraufbeschwøre).

Heute zeige ich euch gleich vier Roboter/kuenstliche „Intelligenzen“.

Die ersten zwei sind vom Flughafen in Oslo (aber die stehen nicht nur dort):

Die Menschen, welche einem den Platz im Flugzeug zuweisen, das Flugticket aushaendigen und das Gepaeck klar machen sehen nun so aus:

Und ich finde das gut! Steh ich deswegen doch nicht mehr in langen Schlangen und habe mehr Zeit zu lesen.

Und die Menschen welche einem im Hotel willkommen heiszen und den Zimmerschluessel geben, haben nun eine aehnliche Form:

Man beachte die Fliege. Tihihi … Anthropomorphismus finde ich immer witzig.

Und als letztes dann die Transformation der Personen, welche in Restaurants die Bestellung und Bezahlung entgegen nehmen:

Die haben zumindest niemals schlechte Laune.

Ist das alles toll? Meine persønliche Meinung auszer Acht lassend, denke ich, dass dies die falsche Frage ist. Richtige fuehlt sich die Frage an: kann man im Kapitalismus verbieten, dass die Kapitalisten Roboter kaufen, anstatt Menschen einzustellen? Der oben verlinkte Artikel zu Schumpeters Kapitalismustheorie beantwortet dies teilweise. Und Beides spielt in meine eher positive Interpretation der um uns vorgehenden Ereignisse.